
CHAPTER THIRTEEN

KINETIC THEORY

13.1 INTRODUCTION

Boyle discovered the law named after him in 1661. Boyle,
Newton and several others tried to explain the behaviour of
gases by considering that gases are made up of tiny atomic
particles. The actual atomic theory got established more than
150 years later. Kinetic theory explains the behaviour of gases
based on the idea that the gas  consists of rapidly moving
atoms or molecules. This is possible as the inter-atomic forces,
which are short range forces that are important for solids
and liquids,  can be neglected for gases. The kinetic theory
was developed in the nineteenth century by Maxwell,
Boltzmann and others. It has been remarkably successful. It
gives a molecular interpretation of  pressure and temperature
of a gas, and is consistent with gas laws and Avogadro’s
hypothesis. It correctly explains specific heat capacities of
many gases. It also relates measurable properties of gases
such as viscosity, conduction and diffusion with molecular
parameters, yielding estimates of molecular sizes and masses.
This chapter gives an introduction to kinetic theory.

13.2 MOLECULAR NATURE OF MATTER

Richard Feynman, one of the great physicists of 20th century
considers the discovery that “Matter is made up of atoms” to
be a very significant one. Humanity may suffer annihilation
(due to nuclear catastrophe) or extinction (due to
environmental disasters) if we do not act wisely. If that
happens, and all of scientific knowledge were to be destroyed
then Feynman would like the ‘Atomic Hypothesis’ to be
communicated to the next generation of creatures in the
universe. Atomic Hypothesis: All things are made of atoms -
little particles that move around in perpetual motion,
attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another.

Speculation that matter may not be continuous, existed in
many places and cultures. Kanada in India and Democritus
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in Greece had suggested that matter may consist
of indivisible constituents. The scientific ‘Atomic
Theory’  is usually credited to John Dalton. He
proposed the atomic  theory to explain the laws
of definite and multiple proportions obeyed by
elements when they combine into compounds.
The first law says that any given compound has,
a fixed proportion by mass of its constituents.
The second law says that when two elements
form more than one compound, for a fixed mass
of one element, the masses of the other elements
are in ratio of small integers.

To explain the laws Dalton suggested, about
200 years ago,  that the smallest constituents
of an element are atoms. Atoms of one element
are identical but differ from those of other
elements.  A small number of atoms of each
element combine to form a molecule of the
compound. Gay Lussac’s law, also given in early
19th century, states:  When gases combine
chemically to yield another gas, their volumes
are in the ratios of small integers.  Avogadro’s
law  (or hypothesis) says: Equal volumes of all
gases at equal temperature and pressure have
the same number of molecules.  Avogadro’s law,
when combined with Dalton’s theory explains
Gay  Lussac’s law.  Since the elements are often
in the form of molecules, Dalton’s atomic theory
can also be referred to as the molecular theory

of matter. The theory is now well accepted by
scientists. However even at the end of the
nineteenth century there were famous scientists
who did not believe in atomic theory !

From many observations, in recent times we
now know that  molecules (made up of one or
more atoms) constitute matter. Electron
microscopes  and scanning tunnelling
microscopes enable us to even see them. The
size of an atom is about an angstrom (10 -10   m).
In solids, which are tightly packed, atoms are
spaced about a few  angstroms (2 Å) apart. In
liquids the separation between atoms is also
about the same.  In liquids the atoms  are not
as rigidly fixed as in solids, and can move
around. This enables a liquid to flow.  In gases
the interatomic distances are in tens of
angstroms.  The average distance a molecule
can travel without colliding is called the  mean
free path. The mean free path, in gases, is of
the order of thousands of angstroms. The atoms
are much freer in gases and can travel long
distances without colliding. If they are not
enclosed, gases disperse away. In solids and
liquids the closeness makes the interatomic force
important. The force has a long range attraction
and a short range repulsion. The atoms attract
when they are at a few angstroms but repel when
they come closer. The static appearance of a gas

Atomic Hypothesis in Ancient India and Greece

Though John Dalton is credited with the introduction of atomic viewpoint in modern science, scholars in
ancient India and Greece conjectured long before the existence of atoms and molecules.  In the Vaiseshika
school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in
considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter.
It was argued that if matter could be subdivided without an end, there would be no difference between a
mustard seed and the Meru mountain.  The four kinds of atoms (Paramanu — Sanskrit word for the
smallest particle) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic
mass and other attributes, were propounded. Akasa (space) was thought to have no atomic structure and
was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a
diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending
upon the nature and ratio of the constituent atoms.  The size of the atoms was also estimated, by conjecture
or by methods that are not known to us.  The estimates vary. In Lalitavistara, a famous biography of the
Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic
size, of the order of 10–10 m.
   In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The
word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in
shape, size and other properties and this resulted in the different properties of the substances formed
by their combination.  The atoms of water were smooth and round and unable to ‘hook’ on to each
other, which is why liquid /water flows easily.   The atoms of earth were rough and jagged, so they held
together to form hard substances.  The atoms of fire were thorny which is why it caused painful burns.
These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they
were intuitive conjectures and speculations not tested and modified by quantitative experiments - the
hallmark of modern science.
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320 PHYSICS

is misleading. The gas is full of activity and the
equilibrium is a dynamic one. In dynamic
equilibrium, molecules collide and change their
speeds during the collision. Only the average
properties are constant.

Atomic theory is not the end of our quest, but
the beginning. We now know that atoms are not
indivisible or elementary. They consist of a
nucleus and electrons. The nucleus itself is made
up of protons and neutrons. The protons and
neutrons are again made up of quarks. Even
quarks may not be the end of the story. There
may be string like elementary entities. Nature
always has surprises for us, but the search for
truth is often enjoyable and the discoveries
beautiful. In this chapter, we shall limit ourselves
to understanding the behaviour of gases (and a
little bit of solids), as a collection of moving
molecules in incessant motion.

13.3   BEHAVIOUR OF GASES

Properties of gases are easier to understand than
those of solids and liquids. This is mainly
because in a gas, molecules are far from each
other and their mutual interactions are
negligible except when two molecules collide.
Gases at low pressures and high temperatures
much above that at which they liquefy (or
solidify) approximately satisfy a simple relation
between their pressure, temperature and volume
given by (see Ch. 11)

PV = KT (13.1)

for a given sample of the gas.  Here T is the
temperature in kelvin or (absolute)  scale.  K is
a constant for the given sample but varies with
the volume of the gas. If we now  bring in  the
idea of atoms or molecules then K is proportional
to the number of molecules, (say) N in the
sample. We can write K = N k . Observation tells
us that this k is same for all gases. It is called
Boltzmann constant and is denoted by k

B
.

As 1 1 2 2

1 1 2 2

P V P V

N T N T
  = constant = kB (13.2)

if P, V and T are same, then N is also same for
all gases. This is Avogadro’s hypothesis, that  the
number of molecules per unit volume is same
for all gases at a fixed temperature and pressure.
The number in 22.4 litres of any gas is 6.02 
1023.  This is known as Avogadro number  and
is denoted by NA. The mass of 22.4 litres of any
gas is equal to its molecular weight in grams at
S.T.P (standard temperature 273 K and pressure
1 atm). This amount of substance is called a
mole (see Chapter 2 for a more precise definition).
Avogadro had guessed the equality of numbers
in equal volumes of gas at a fixed temperature
and pressure from chemical reactions.  Kinetic
theory justifies this hypothesis.

The perfect gas equation can be written as

PV = μ RT (13.3)

where  μ   is the number of moles and R  = NA
kB is a universal constant. The temperature T is
absolute temperature.  Choosing kelvin scale for

John Dalton (1766- 1844)

He was an English chemist. When different types of atoms combine,
they obey certain simple laws. Dalton’s atomic theory explains these
laws in a simple way. He also gave a theory of colour
blindness.

Amedeo Avogadro (1776 – 1856)

He made a brilliant guess that equal volumes of gases
have equal number of molecules at the same
temperature and pressure. This helped in
understanding the combination of different gases in

a very simple way. It is now called Avogadro’s hypothesis (or law). He also
suggested that the smallest constituent of gases like hydrogen, oxygen and
nitrogen are not atoms but diatomic molecules.
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KINETIC THEORY 321

absolute temperature, R = 8.314 J mol–1K–1.
Here

0 A

M N

M N
   (13.4)

where M is the mass of the gas containing N
molecules, M0 is the molar mass and NA the
Avogadro’s number. Using  Eqs. (13.4) and (13.3)
can also be written as

PV = kB NT or P = kB nT

P (atm)
Fig.13.1 Real gases approach ideal gas behaviour

at low pressures and high temperatures.

where  n is the number density, i.e. number of
molecules per unit volume. kB is  the Boltzmann
constant introduced above. Its value in SI units
is 1.38  10–23 J K–1.

Another useful form of Eq. (13.3) is

0

RT
P

M

  (13.5)

where ρ is the mass density of the gas.
A gas that satisfies Eq. (13.3) exactly at all

pressures and temperatures is defined to be an
ideal gas. An ideal gas is a simple theoretical
model of a gas. No real gas is truly ideal.
Fig. 13.1 shows departures from ideal gas
behaviour for a real gas at three different
temperatures. Notice that all curves approach
the ideal gas behaviour for low  pressures and
high temperatures.

At low pressures or high temperatures the
molecules are far apart and molecular
interactions are negligible. Without interactions
the gas behaves like an ideal one.

If we fix μ and T in Eq. (13.3), we get

PV = constant (13.6)

i.e., keeping temperature constant, pressure of
a given mass of gas varies inversely with volume.
This is the famous Boyle’s law. Fig. 13.2  shows
comparison between experimental P-V curves
and the theoretical curves predicted by Boyle’s
law. Once again you see that the  agreement is
good at high temperatures and  low pressures.
Next, if you fix P, Eq. (13.1) shows that V ∝  T
i.e., for a fixed pressure, the volume of a gas is
proportional to its absolute temperature T
(Charles’ law). See Fig. 13.3.

Fig.13.2 Experimental P-V curves (solid lines) for
steam at three temperatures compared
with Boyle’s law (dotted lines). P is in units
of 22 atm and V in units of 0.09 litres.

Finally, consider a mixture of non-interacting
ideal  gases: μ

1
  moles of gas 1, μ

2
 moles of gas

2, etc. in a vessel of volume V at temperature T
and  pressure P. It is then found that the
equation  of state of the mixture is :

PV = ( μ1 + μ2 +…  ) RT (13.7)

i.e. 1 2 ...
RT RT

P
V V

     (13.8)

= P1 + P2 + … (13.9)

Clearly P1 =    μ1 R T/V   is the pressure gas 1
would  exert at the same conditions of volume
and  temperature if no other gases were present.
This is called the partial pressure of the gas.
Thus, the total pressure of a mixture of ideal
gases is the sum of partial pressures. This is
Dalton’s law of partial pressures.

 
 

–1
–1

J
m

ol
K

p
V T  
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322 PHYSICS

W

W

W

Fig. 13.3 Experimental T-V curves (solid lines) for
CO2 at three pressures compared with
Charles’ law (dotted lines). T is in units of
300 K and V in units of 0.13 litres.

We next consider some examples which give
us information about the volume occupied by
the molecules and the volume of a single
molecule.

Example 13.1 The density of water is  1000
kg m–3. The density of water vapour at 100 °C
and 1 atm pressure is 0.6 kg m–3. The
volume of a molecule multiplied by the total
number gives ,what is called, molecular
volume. Estimate the ratio (or fraction) of
the molecular volume  to the total volume
occupied by the water vapour under the
above conditions of temperature and
pressure.

Answer For  a given mass of water molecules,
the density is less if volume is large. So the
volume of the vapour is  1000/0.6  = /(6 10 -4 )
times larger.  If densities of bulk water and water
molecules are same, then the fraction of
molecular volume to the total volume in liquid
state is 1. As volume in vapour state has
increased, the fractional volume is less by the
same amount, i.e.  610-4.       W

Example 13.2   Estimate the volume of a
water molecule using the data in Example
13.1.

Answer In the liquid (or solid) phase, the
molecules of water are quite closely packed. The

density of water molecule may therefore, be
regarded as roughly equal to the density of bulk
water = 1000 kg m–3. To estimate the volume of
a water molecule, we need to know the mass of
a single water molecule. We know that 1 mole
of water has a mass approximately equal to

(2 + 16)g  = 18 g  =  0.018 kg.
Since 1 mole   contains  about   6  1023

molecules   (Avogadro’s  number),   the mass of
a molecule of water is  (0.018)/(6  1023) kg  =
3  10–26 kg.   Therefore, a rough estimate of the
volume of a water  molecule is as follows :

Volume of a water molecule
= (3  10–26 kg)/ (1000 kg m–3)
= 3  10–29 m3

= (4/3) π  (Radius)3

Hence, Radius ≈ 2 10-10  m = 2 Å   W

Example 13.3   What is the average
distance between atoms   (interatomic
distance) in water? Use the data given in
Examples 13.1 and 13.2.

Answer :   A given mass of water in vapour state
has 1.67103 times the volume of the same mass
of water in liquid state (Ex. 13.1). This is also
the increase in the amount of volume available
for each molecule of water. When volume
increases by 103 times the radius increases by
V1/3 or 10 times, i.e., 10  2 Å  = 20 Å. So the
average distance is 2  20 = 40  Å.   W

Example 13.4 A vessel contains two non-
reactive gases : neon (monatomic) and
oxygen (diatomic). The ratio of their partial
pressures is 3:2. Estimate the ratio of  (i)
number of molecules and (ii) mass density
of neon and oxygen in the vessel. Atomic
mass of Ne = 20.2 u, molecular mass of O2
= 32.0 u.

Answer Partial pressure of a gas in a mixture is
the pressure it would have for the same volume
and temperature if it alone occupied the vessel.
(The total pressure of a mixture of non-reactive
gases is the sum of partial pressures due to its
constituent gases.) Each gas (assumed ideal)
obeys the gas law. Since V and T are common to
the two gases,  we  have  P1V = μ 1 RT and P2V =
μ2 RT, i.e. (P1/P2) = (μ1 / μ2). Here 1 and 2 refer
to neon and oxygen respectively. Since (P1/P2) =
(3/2) (given), (μ1/ μ2) = 3/2.

W
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KINETIC THEORY 323

(i) By definition μ1 = (N1/NA ) and μ2 = (N2/NA)
where N1 and N2 are the number of molecules
of 1 and 2, and NA is the Avogadro’s number.
Therefore, (N1/N2) = (μ1 / μ2)  = 3/2.

(ii) We can also write μ1 = (m1/M1) and μ2 =
(m2/M2) where m1 and m2 are the masses of
1 and 2; and M1 and M2 are their molecular
masses. (Both m1 and M1; as well as m2 and
M2 should be expressed in the same units).
If ρ1 and ρ2  are the mass densities of 1 and
2 respectively,  we have

1 1 1 1 1

2 2 2 2 2

/
/

m V m M

m V m M

  
  

  
        

3 20.2
0.947

2 32.0
     W

13.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 Å). Thus the
interaction between the molecules is negligible
and we can assume that they move freely in
straight lines according to Newton’s first law.
However, occasionally, they come close to each
other, experience intermolecular forces and their
velocities change.  These interactions are called
collisions.  The molecules collide incessantly
against each other or with the walls and change
their velocities.  The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that  total kinetic
energy is conserved. The total momentum is
conserved as usual.

13.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side l. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 13.4.  A molecule with velocity

(vx, vy, vz ) hits the planar wall parallel to yz-
plane of area A (= l2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(-vx, vy, vz ) . The change in momentum of the
molecule is :  –mvx – (mvx) = – 2mvx . By the
principle of conservation of momentum, the
momentum imparted to the wall in the collision
= 2mvx .

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
Δt, a molecule with x-component of velocity vx
will hit the wall if it is within the distance vx Δt
from the wall. That is, all molecules within the
volume Avx Δt only can hit the wall in time Δt.
But, on the average, half of these are moving
towards the wall and the other half away from
the wall. Thus the number of molecules with
velocity (vx, vy, vz )  hitting the wall in time Δt is
�A vx  Δt n where n is the number of molecules
per unit volume. The total momentum
transferred to the wall by these molecules in
time Δt   is :

Q = (2mvx) (� n A vx Δt ) (13.10)
The force on the wall is the rate of momentum

transfer Q/Δt  and pressure is force per unit
area :

P =  Q /(A Δt)  =  n m vx
2 (3.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities.  The  above equation therefore, stands
for pressure due to the group of molecules with
speed vx  in  the x-direction and n stands for the
number density of that group of molecules. The

Fig. 13.4 Elastic collision of a gas molecule with
the wall of the container.
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324 PHYSICS

total  pressure is obtained by summing over the
contribution due to all groups:

P = n m 2
xv (13.12)

where 2
xv  is the average of  vx

2  .  Now the gas
is isotropic, i.e. there is no preferred direction
of velocity of the molecules in the vessel.
Therefore, by symmetry,

2
xv  = 2

yv  = 2
zv

= (1/3) [ 2
xv  +  2

yv  + 2
zv ] = (1/3) 2v (13.13)

where v is the speed and 2v   denotes the mean

of the squared speed. Thus

P = (1/3) n m 2v (13.14)

Some remarks on this derivation. First,
though we choose the container to be a cube,
the shape of the vessel really is immaterial. For
a vessel of arbitrary shape, we can always choose
a small infinitesimal (planar) area and carry
through the steps above. Notice that both A and
Δt do not appear in the final result. By Pascal’s
law, given in Ch. 10,  pressure in one portion of

the gas  in equilibrium is the same as anywhere
else. Second, we have ignored any collisions in
the derivation. Though this assumption is
difficult to justify rigorously, we can qualitatively
see that it will not lead to erroneous results.
The number of molecules hitting the wall in time
Δt was found to be � n Avx Δt. Now the collisions
are random and the gas is in a steady state.
Thus, if a molecule with velocity (vx, vy, vz )
acquires a  different velocity due to collision with
some molecule, there will always be some other
molecule with a different initial velocity which
after a collision acquires the velocity  (vx, vy, vz ).
If this were not so, the distribution of velocities
would not remain steady. In any case we are
finding 2

xv . Thus, on the whole, molecular
collisions (if they are not too frequent and the
time spent in a collision is negligible compared
to time between collisions)  will not affect the
calculation above.

13.4.2 Kinetic Interpretation of Temperature

Equation (13.14) can be written as
PV   =  (1/3) nV m 2v (13.15a)

Founders of Kinetic Theory of Gases

James Clerk Maxwell (1831 – 1879), born in Edinburgh,
Scotland, was among the greatest physicists of the nineteenth
century.  He derived the thermal velocity distribution of molecules
in a gas and was among the first to obtain reliable estimates of
molecular parameters from measurable quantities like viscosity,
etc.  Maxwell’s greatest achievement was the unification of the laws
of electricity and magnetism (discovered by Coulomb, Oersted,
Ampere and Faraday) into a consistent set of equations now called
Maxwell’s equations. From these he arrived at the most important
conclusion that light is an
electromagnetic wave.
Interestingly, Maxwell did not
agree with the idea (strongly
suggested by the Faraday’s
laws of electrolysis) that
electricity was particulate in
nature.

Ludwig Boltzmann
(1844 – 1906) born in

Vienna, Austria, worked on the kinetic theory of gases
independently of Maxwell.  A firm advocate of atomism, that is
basic to kinetic theory, Boltzmann provided a statistical
interpretation of the Second Law of thermodynamics and the
concept of entropy. He is regarded as one of the founders of classical
statistical mechanics. The proportionality constant connecting
energy and temperature in kinetic theory is known as Boltzmann’s
constant in his honour.
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W

PV   =   (2/3) N x � m 2v (13.15b)
where N (= nV ) is the number of molecules in
the sample.

The quantity in the bracket is the average
translational kinetic energy of the molecules in
the gas. Since the internal energy E of an ideal
gas is purely kinetic*,

E = N  (1/2) m 2v (13.16)

Equation (13.15) then gives :
PV = (2/3) E (13.17)
We are now ready for a kinetic interpretation

of temperature. Combining Eq. (13.17) with the
ideal gas Eq. (13.3), we get

E = (3/2)  kB  NT                                             (13.18)
or  E/ N = �  m 2v    =   (3/2) kBT (13.19)
i.e., the average kinetic energy of a molecule is
proportional to the absolute temperature of the
gas; it is independent of pressure, volume or
the nature of the ideal gas. This is a fundamental
result relating temperature, a macroscopic
measurable parameter of a gas
(a thermodynamic variable as it is called) to a
molecular quantity, namely the average kinetic
energy of a molecule. The two domains are
connected by the Boltzmann constant. We note
in passing that Eq. (13.18) tells us that internal
energy of an ideal gas depends only on
temperature, not on pressure or volume. With
this interpretation of temperature, kinetic theory
of an ideal gas is completely consistent with the
ideal gas equation and the various gas laws
based on it.

For a mixture of non-reactive ideal gases, the
total pressure gets contribution from each gas
in the mixture. Equation (13.14) becomes

P = (1/3) [n1m1
2
1v  + n2 m2 

2
2v +…  ] (13.20)

In equilibrium, the average kinetic energy of
the molecules of different gases will be equal.
That is,

�  m1 
2
1v  = � m2 

2
2v = (3/2) kB T

so that

P = (n1 + n2 +…  ) kB T (13.21)

which is Dalton’s law of partial pressures.
From Eq. (13.19), we can get an idea of the

typical speed of molecules in a gas. At a
temperature T = 300 K, the mean square speed
of a molecule in nitrogen gas is :

2 –26
26

28
4.65 10

6.02 10
N

A

M
m

N
    

  kg.

2v   =  3 kB T / m    =    (516)2 m2s-2

The square root of 2v  is known as root mean
square (rms) speed and is denoted by vrms,

( We can also write    2v     as   < v2 >.)
vrms   =    516 m s-1

The speed is of the order of the speed of sound
in air. It follows from Eq. (13.19) that at the same
temperature, lighter molecules have greater rms
speed.

Example 13.5 A flask contains argon and
chlorine in the ratio of 2:1 by mass.  The
temperature of the mixture is 27 °C. Obtain
the ratio of  (i) average kinetic energy per
molecule, and (ii) root mean square speed
vrms of the molecules of the two gases.
Atomic mass of argon = 39.9 u; Molecular
mass of chlorine = 70.9 u.

Answer The important point to remember is that
the average kinetic energy (per molecule) of any
(ideal) gas (be it monatomic like argon, diatomic
like chlorine or polyatomic) is always equal to
(3/2) kBT. It depends only on temperature, and
is independent of the nature of the gas.
(i) Since argon and chlorine both have the same

temperature in the flask, the ratio of average
kinetic energy (per molecule) of the two gases
is 1:1.

(ii) Now  � m vrms
2  =  average kinetic energy per

molecule =  (3/2) ) kBT where m is the mass
of a molecule of the gas. Therefore,

  
  

  
  

  
  

2

Cl ClAr
2

Ar ArCl

rms

rms

m M

m M
  

v

v = 
70.9
39.9

 =1.77

where M denotes the molecular mass of the gas.
(For argon, a molecule is just an atom of argon.)
Taking square root of both sides,

  
  

Ar

Cl

rms

rms

v

v  =  1.33

You should note that the composition of the
mixture by mass is quite irrelevant to the above

* E denotes the translational part of the internal energy U that may include energies due to other degrees of
freedom also. See section 13.5.
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W

calculation. Any other proportion by mass of
argon and chlorine would give the same answers
to (i) and (ii), provided the temperature remains
unaltered. W

Example 13.6   Uranium has two isotopes
of masses 235 and 238 units. If both are
present in Uranium hexafluoride gas which
would have the  larger average speed ? If
atomic mass of fluorine is 19 units,
estimate the percentage difference in
speeds at any temperature.

Answer  At a fixed temperature the average
energy  = � m <v2 > is constant. So  smaller the

mass of the molecule, faster will be the speed.
The ratio of speeds is inversely proportional to
the square root of the ratio of the masses. The
masses are 349 and 352 units. So

v349 / v352  =   ( 352/ 349)1/2 = 1.0044 .

Hence difference 
V

V

 
= 0.44 %.

[235U is the isotope needed for nuclear fission.
To separate it from the more abundant isotope
238U,  the mixture  is surrounded by a  porous
cylinder. The porous cylinder must be thick and
narrow, so that the molecule wanders through
individually, colliding with the walls of the long
pore. The faster molecule will leak out more than

Maxwell Distribution Function

In a given mass of gas, the velocities of all molecules are not the same, even when bulk
parameters like pressure, volume and temperature are fixed. Collisions change the direction
and the speed of molecules. However in a state of equilibrium, the distribution of speeds is
constant or fixed.

Distributions are very important and useful when dealing with systems containing large
number of  objects. As an example consider the ages of different persons in a city. It is not
feasible to deal with the age of each individual. We can divide the people into groups: children
up to age 20 years, adults between ages of 20 and 60, old people above 60. If we want more
detailed information we can choose smaller intervals, 0-1, 1-2,..., 99-100 of age groups. When
the size of the interval becomes smaller, say half year, the number of persons in the interval
will also reduce, roughly half the original number in the one  year interval. The number of
persons  dN(x)  in the age interval x and x+dx is proportional to dx or dN(x)  =   nx  dx.  We have
used nx to denote the number of persons at the value of x.

Maxwell distribution of molecular speeds

In a similar way the molecular speed distribution gives the number of molecules between
the speeds v and v+ dv. dN(v) = 4p N a3e–bv2 v2 dv = nvdv.  This is called Maxwell distribution.
The plot of nv  against v is shown in the figure. The fraction of the molecules with speeds v and
v+dv is equal to the area of the strip shown. The average of any quantity like v2 is defined by
the integral <v2> = (1/N ) ∫ v2 dN(v)   = ÅÅÅÅÅ(3kB T/m)    which  agrees with the result derived from
more elementary considerations.
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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. W

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12 ). Can you guess the
explanation from the above answer?

Fig. 13.5  Molecules going through a porous wall.

Example 13.7  (a)  When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar uses a heavy cricket
bat while playing. Does it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat

is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, piston  bat,

cylinder  wicket, molecule  ball.)         W

13.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

2 2 21 1 1
      

2 2 2t x y zmv mv mv    (13.22)

For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < t > is

2 2 21 1 1 3
2 2 2 2t x y z Bmv mv mv k T     (13.23)

Since there is no preferred direction, Eq. (13.23)
implies

21 1
    

2 2x Bmv k T  ,
21 1

    
2 2y Bmv k T ,

21 1
    

2 2z Bmv k T (13.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two;and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it  has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., � mvx

2  and similar terms in
vy and vz. In, Eq. (13.24) we see that in thermal
equilibrium, the average of each such term is
� kBT .
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